Mathematical model for the ubiquitin activating enzyme E1

نویسندگان

  • Francisco Javier López-Cánovas
  • Francisca Cánovas
  • María Antonia Günther Sillero
  • Antonio Sillero
چکیده

The ubiquitin-activating enzyme E1 (EC 6.3.2.19) represents the first step in the degradation of proteins by the ubiquitin proteasome pathway. E1 transfers ubiquitin from the ubiquitinated E1 to the ubiquitin carrier proteins (E2), ubiquitin-protein ligases (E3) and proteins. This process is rather complex, and known from the work of Haas, Ciechanover, Hershko, Rose and others. The occurrence of 19 hypothetical intermediate enzyme forms (EFs) and 22 different reactions were considered in the presence of ubiquitin (Ub), ATP, adenosine 5’-tetraphosphate (p4A), pyrophosphate (P2), and tripolyphosphate (P3) as substrates, and iodoacetamide (IAA) and dithiothreitol (DTT) as inhibitors. Inspired by the work of Cha (Cha (1968) J. Biol. Chem., 243, 820-825) we have treated these reactions in two complementary ways: in rapid equilibrium and in steady state. The kinetics of both types of reactions were simulated and solved with a system of ordinary differential equations using the Mathematica Program. The ubiquitination of E1 has been also theoretically coupled to the ubiquitination of E2, E3 and proteins. This makes the model useful to predict the theoretical influence of inhibitors (or of changes in some parameters of the reaction) on the ubiquitination of proteins. The Program responds to changes in the concentration of ATP or ubiquitin and has predictive properties as shown by the influence of AMP on the synthesis of p4A, calculated theoretically and confirmed experimentally.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activating the ubiquitin family: UBA6 challenges the field.

Since its discovery in 1981, ubiquitin-activating enzyme 1 was thought to be the only E1-type enzyme responsible for ubiquitin activation. Recently, a relatively uncharacterized E1 enzyme, designated ubiquitin-like modifier activating enzyme 6, was also shown to activate ubiquitin. Ubiquitin-activating enzyme 1 and ubiquitin-like modifier activating enzyme 6 are both essential proteins, and eac...

متن کامل

Conjugation of the Ubiquitin Activating Enzyme UBE1 with the Ubiquitin-Like Modifier FAT10 Targets It for Proteasomal Degradation

The ubiquitin-like modifier HLA-F adjacent transcript 10 (FAT10) directly targets its substrates for proteasomal degradation by becoming covalently attached via its C-terminal diglycine motif to internal lysine residues of its substrate proteins. The conjugation machinery consists of the bispecific E1 activating enzyme Ubiquitin-like modifier activating enzyme 6 (UBA6), the likewise bispecific ...

متن کامل

Crystal Structure of the Human Ubiquitin-activating Enzyme 5 (UBA5) Bound to ATP

E1 ubiquitin-activating enzymes (UBAs) are large multidomain proteins that catalyze formation of a thioester bond between the terminal carboxylate of a ubiquitin or ubiquitin-like modifier (UBL) and a conserved cysteine in an E2 protein, producing reactive ubiquityl units for subsequent ligation to substrate lysines. Two important E1 reaction intermediates have been identified: a ubiquityl-aden...

متن کامل

Mutation in E1, the Ubiquitin Activating Enzyme, Reduces Drosophila Lifespan and Results in Motor Impairment

Neurodegenerative diseases cause tremendous suffering for those afflicted and their families. Many of these diseases involve accumulation of mis-folded or aggregated proteins thought to play a causal role in disease pathology. Ubiquitinated proteins are often found in these protein aggregates, and the aggregates themselves have been shown to inhibit the activity of the proteasome. These and oth...

متن کامل

Homology Modelling of Human E1 Ubiquitin Activating Enzyme.

Human E1 is a key player in protein ubiquitination, however the E1 structure is not available. In this paper, we describe the derivation of a human E1 structure using molecular modelling based on the crystal structure of S. cerevisiae E1 and M. Musculus E1. Key interactions between our E1 model and ubiquitin are also discussed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010